Automatic Landmarking of 2D Medical Shapes Using the Growing Neural Gas Network

نویسندگان

  • Anastassia Angelopoulou
  • Alexandra Psarrou
  • José García Rodríguez
  • Kenneth Revett
چکیده

MR Imaging techniques provide a non-invasive and accurate method for determining the ultra-structural features of human anatomy. In this study, we utilise a novel approach to segment out the ventricular system in a series of high resolution T1-weighted MR images. Our approach is based on an automated landmark extraction algorithm which automatically selects points along the contour of the ventricles from a series of 2D MRI brain images. Automated landmark extraction is accomplished through the use of the self-organising network the growing neural gas (GNG) which is able to topographically map the low dimension of the network to the high dimension of the manifold of the contour without requiring a priori knowledge of the structure of the input space. The GNG method is compared to other self-organising networks such as Kohonen and Neural Gas (NG) maps and an error metric is applied to quantify the performance of our algorithm compared to the other two.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic landmark extraction using Growing Neural Gas (GNG)

A new method for automatically building statistical shape models from a set of training examples and in particular from a class of hands. In this method, landmark extraction is achieved using a self-organising neural network, the Growing Neural Gas (GNG), which is used to preserve the topology of any input space. Using GNG, the topological relations of a given set of deformable shapes can be le...

متن کامل

Assessment of Different Training Methods in an Artificial Neural Network to Calculate 2D Dose Distribution in Radiotherapy

Introduction: Treatment planning is the most important part of treatment. One of the important entries into treatment planning systems is the beam dose distribution data which maybe typically measured or calculated in a long time. This study aimed at shortening the time of dose calculations using artificial neural network (ANN) and finding the best method of training t...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Inverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network

In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...

متن کامل

Learning 2D Hand Shapes Using the Topology Preservation Model GNG

Recovering the shape of a class of objects requires establishing correct correspondences between manually or automatically annotated landmark points. In this study, we utilise a novel approach to automatically recover the shape of hand outlines from a series of 2D training images. Automated landmark extraction is accomplished through the use of the self-organising model the growing neural gas (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005